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the momentum-frequency variables, where \J(p)-=u(p)^z-v(p)xi. Here uy v, and E are 

*=(#o,p). defined by 

Expanding G(p) in terms of the Pauli matrices, xiy 1 in E(P)= [G»2/2w-M)2+<£2]1/2, 
the 2X2 spin space leads to the expression (16) for G 
in lowest approximation. The trace is over the spin _ .\y_ V« . Pi^m~^\ 
space. The propagator G may be diagonalized by means LU\P)J — ^ <" ^ . y 
of the unitary Bogoliubov transformation: 

\J(p)G(p)V(p) = i/£p0-^(E(p)-ir,n Lv(p)J= i~Lu(p)J. 
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A method is formulated for the calculation from first principles of a variety of electronic and atomic 
properties of metals. The method depends upon three approximations: (1) the self-consistent-field ap­
proximation ; (2) the assumption that the core states are the same as in the free atom; and (3) a perturbation 
solution, carried to second order, of the Hamiltonian matrix based upon orthogonalized plane waves. Only 
the last approximation distinguishes the method from more traditional band calculations; it is regarded as 
appropriate for the treatment of most polyvalent metals. The only experimental parameters which enter 
for a given metal are the atomic number and the atomic volume. 

It is found that many electronic properties, including the Fermi surface and scattering by defects or 
phonons, may be calculated as for free electrons with an effective perturbing potential. The matrix elements 
of this potential may be written as the product of a structure factor, depending only on the ion positions, 
and a form factor depending only on the Hartree-Fock field of the ion and upon the atomic volume. The 
form factor is found to be a function only of the magnitude of the change in wave number. 

It is found that for a given ion density the energy of the system may be written in terms of a central-
force, two-body interaction between ions or in terms of a sum over wave number space of the Fourier trans­
form of this interaction (the energy-wave number characteristic). The procedure for computing these 
functions from the Hartree-Fock field of the corresponding ion is given. 

I. INTRODUCTION calculations, that many new aspects of the behavior of 

EXISTING a priori calculations of metallic prop- m e t a l s c o u l d b e t r e a t e d i n s o m e d e t a i l 

erties based on the full Hartree or Hartree-Fock T h e work to be described here is part of such a 
treatment of the crystal potential have been, for the program. There are two classes of properties which we 
most part, restricted to computations of the energy w i s h t 0 attack: first, atomic properties which depend 
bands. There are exceptions, notably calculations of the u P o n t h e variation of the total energy as the atoms are 
lattice distance and attempts at calculation of the rearranged; and second, electronic properties which 
cohesive energy, but for the most part properties which depend on the scattering of electrons when the crystal 
depend upon the details of the lattice potential and the i s n ° t perfectly ordered. For both classes of properties 
electronic structure have been beyond the reach of the computations can be carried out without the explicit 
available techniques. determination of the energy bands. We propose to 

Recent developments have given hope of going beyond carry out a rather complete Hartree calculation (ex-
these limitations in treating polyvalent metals. This change is also included where it is felt to be important) 
hope is based on the surprising fact that the Fermi for a general arrangement of the metal ions. 
surfaces of these metals differ very little from free- Certainly the most crucial approximation to be made 
electron spheres,1 indicating a relatively weak influence is the self-consistent-field approximation. Because of 
of the lattice potential. This suggests that we might this approximation we regard the cohesive energy, 
regard this potential as a perturbation and sufficiently which has a large contribution from the correlation 
simplify the analysis, in comparison to traditional band energy, as beyond our reach. Further, we might expect 

1 Extensive discussion of this point appears in the article, the change in energy associated with change in volume 
W. A Harrison Phys. Rev 118,1190 (1960), and in several articles t h a v e k c o n t r i b u t i o n from correlat ions. On the 
appearing in The Fermi Surface, edited by W. A. Harrison and & 

M. B. Webb (John Wiley & Sons, Inc., New York, 1960). o ther h a n d , i t is hoped t h a t changes in energy when the 
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ions are rearranged at constant volume may be rather 
insensitive to many-particle effects. Detailed calcula­
tions of the type described here should give a test to 
the hypothesis that the Hartree approximation suffices 
for treating such properties. 

The second major approximation which is made is the 
treatment of the crystal potential as a perturbation, and 
the use of second-order perturbation theory. In most 
of the polyvalent metals the band gaps, as determined 
from band calculations, are of the order of a tenth the 
Fermi energy and the perturbation treatment should 
be justified. In cases where degenerate, or nearly de­
generate, electron states are coupled by the lattice 
potential, degenerate perturbation theory must be used. 
This corresponds to taking principal values at singu­
larities which occur when energies of all occupied states 
are added. There is, of course, no hope of treating the 
noble metals in this manner since the band gaps are 
comparable to the Fermi energy. In the polyvalent 
metals, on the other hand, the errors involved in using 
the perturbation treatment should be small compared 
to those in determining the potential. Thus, considered 
as a band calculation, the accuracy should not be 
appreciably less than for more refined methods of com­
puting the band energies from a computed potential. 
Such a treatment of the band energies has been used 
by Bassani and Celli2 previously. It should also be 
added that the use of perturbation theory allows a self-
consistent treatment, and therefore favors this treat­
ment over methods which are not done self-consistently. 

A third approximation is made in assuming that the 
core states are the same as in the free atom. This should 
be quite good in most polyvalent metals, moderately 
good in a metal like zinc, and of course totally inade­
quate in a noble or transition metal. This assumption 
is essential not only in allowing us to neglect the banding 
of the core states and their corresponding energy change 
but also in assuring that the first-order, self-consistent 
crystal potential can be written as a sum of spherically 
symmetric terms which do not change when the ions 
are rearranged. 

Some further numerical approximations may be made 
in any detailed analysis, but those mentioned above are 
the significant and essential ones. 

The procedure may be outlined as follows: We take 
as a starting approximation to the conduction-band 
wave function, single plane waves orthogonalized to the 
core states on each ion (wherever it may lie). The 
expectation value of the energy, based upon this wave 
function is found to be independent of the arrangement 
of the ions. These approximate wave functions are then 
improved (and orthogonalized to each other) by taking 
linear combinations (time-dependent linear combina­
tions in the case of scattering) of orthogonalized plane 
waves, and the improvement in the energy expectation 

2 F . Bassani and V. Celli, Nuovo Cimento 11, 805 (1959); 
J. Phys. Chem. Solids 20, 64 (1961). 

value (the time dependence of the linear combinations 
in scattering) is found to depend on the ion arrange­
ment. It is the structure-dependent terms which we 
seek in our analysis. The above calculation is facilitated 
by transforming to a pseudopotential formalism, which 
is then carried out self-consistently in a perturbation 
expansion. 

A prominent feature of the method is the factorization 
of matrix elements of the Hamiltonian into a structure-
dependent factor and an ion-potential-dependent factor 
(form factor) as one does in diffraction theory. Once 
this set of form factors is computed, the scattering by 
any defect of interest involves simply a computation of 
the geometrical structure factors which multiply the 
appropriate form factors, and the application of ordi­
nary free-electron scattering theory. When the effect of 
the band structure is important, it appears in the 
second-order scattering calculation. 

A second feature of the method derives from this 
same factorization. In the energy computation these 
structure factors, which are functions of wave number, 
are separated out and all other summations performed 
first. Thus, the total energy is written as a sum over 
wave number space of the square of the structure factor 
times an energy wave number characteristic. This 
characteristic may be computed for a particular type of 
ion at a given density and then the energy of any 
arrangement of ions is readily computed from the simple 
structure factors and this single characteristic. 

We may alternatively make a Fourier transform of 
this characteristic and derive an entirely equivalent 
two-body central force between ions which allows the 
calculation of the total energy change when the atoms 
are rearranged at constant volume. It is rather striking 
that there exists such a two-body central force inter­
action (for rearrangements at constant volume) in this 
nearly-free-electron limit. Such an interaction (for 
general rearrangements) exists also in the tight-binding 
limit, but in the intermediate case it appears that 
multibody forces are required. 

Because it is possible to separate out the factors which 
depend upon the ion positions, it is perhaps more de­
scriptive of the method to say we calculate the Hamil­
tonian of the ions rather than the energy of the metal. 
We may, for example, introduce a vacancy and minimize 
this Hamiltonian with respect to the positions of the 
neighboring ions. Thus, we obtain rather easily the 
structure of the vacancy with a calculation which has 
the validity of a full band calculation. 

A third feature which we might mention is the com­
plete independence of the method on any long-range 
periodic structure. We precede just as directly with a 
defect present, with a stacking fault, or even with a 
liquid metal. We need simply compute, or determine 
from diffraction experiments, the structure factors and 
use our previously computed energy wave number 
characteristic. The method is also directly applicable to 
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alloys and should lose nothing in reliability, though the 
computations are complicated somewhat. 

A fourth feature of the method is that it is a working 
method which can be applied in detail to a real metal 
with a moderate amount of computation. The author 
has, in fact, applied it to zinc and obtained form factors 
and the energy wave number characteristic and con­
sidered several properties in terms of them. These are 
to be described in the adjoining communication. 

II. DERIVATION OF THE EFFECTIVE 
HAMILTONIAN 

In an independent-particle approximation the elec­
tronic behavior is derivable from a one-electron Schro-
dinger equation, 

(T+V01>)*k=ihWk/dL (2.1) 

T is the kinetic energy operator, Vop contains the crystal 
field and is written as an operator since it will include 
some exchange terms. We distinguish between con­
duction-band states ^fc and core states, ^ r a=^« 
Xtxp(—iEj/h). The core states are the free-atom core 
states computed in the Hartree-Fock approximation. 
The index a, therefore, specifies the ion position as well 
as the angular momentum and energy quantum num­
bers. The conduction-band states are to be computed 
in the Hartree approximation but including exchange 
with the core states; that is, we use a hybrid system. 

By utilizing a pseudopotential formalism based on 
the orthogonalized-plane-wave (OPW) method, we will 
convert Eq. (2.1) into a form which allows for a pertur­
bation expansion. Following Phillips and Kleinman3 we 
write the conduction-band wave functions as two terms 

* * = [ ^ - L « ( ^ a , ^ ) ^ > ~ - ^ , (2.2) 

where <pk is to be made smooth in some sense. ho)k will, 
of course, be taken equal to the appropriate electron 
energy, but at this point (pk may depend upon time. 
Such a form is always valid and simply makes explicit 
the orthogonality between the tyk and the ^ a . 

Equation (2.2) may be substituted into Eq. (2.1) to 
obtain an equation satisfied by <pk, 

T(Pk+Vop<Pk — Yla(il/a,<Pk)(Ea--hQ)k)4'a 

= fioikipk
Jtih(d/dt)[_ipk—Y.a{^a^k)^a]^ (2.3) 

We define the pseudopotential, W, by 

W<pk= V0„<pk-Y,atta,<pk){Ea-ho>k)ypa, (2.4) 

so that (2.3) may be written in the form, 

T(pk+W<pk= f^k¥>k+ihd/dtZ<Pk—T,a(^a,<Pk)^a']' (2-5) 

The term in W will be regarded as a perturbation in 
all of our analysis. 

3 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287, 880 
(1959). 

Cohen and Heine4 have pointed out that there are 
many choices of the (pk which correspond to the same 
^k derived by Eq. (2.2). We wish to pick a particular 
set of (pk which gives speedy convergence to the pertur­
bation expansion and which puts the pseudopotential, 
W, in convenient form. Cohen and Heine sought rapid 
convergence by minimizing — (<pfc,VVfc)/( <£&>¥>&)• If <pu 
is an energy eigenstate, this is equivalent to maximizing 
{<pklW<pk)/{(pk}(pk), as may be seen from Eq. (2.3). This 
was also the procedure used by the author5 in his earlier 
treatment of zinc. Such an approach leads to difficulties 
if the potential is written as a sum of localized, but 
overlapping, potentials; the resulting expression in­
volves overlap integrals between local potentials and 
neighboring cores. These difficulties are avoided by 
defining an approximate potential F o p ' which can be 
written as a sum of nonoverlapping potentials and 
maximizing the corresponding ((pk}W

f<pk)/(<pk,(pk). We 
include the strongest part of the potential near the ion 
cores in Vop' so that we do not expect to lose appreciable 
speed of convergence. Furthermore, when we compute 
matrix elements, we use W rather than only W, so the 
accuracy of the method should not be affected and our 
result is almost independent of the precise manner in 
which Fop' is constructed. 

The optimization proceeds just as in our earlier 
treatment of zinc5 and we obtain 

; ( ̂ ^ ^ ) L ( f c <Pk)^a 
W (fk^Uifk^ , 

(<Pk, ^k)—J^eifo, <pk) (<pk,fo) 
with 

U(pk= V0T>'<pk— H atyoV op'(Pkty a- (2.6) 

We may note that the operator W is not Hermitian, 
nor is it linear; these difficulties derive from the non-
orthogonality between the orthogonalized plane waves. 
We may avoid associated ambiguities by defining a 
more general operator, W'(K) : 

The difference between W and Wf is a simple po­
tential, which we write as V(r). Thus, the total pseudo-
potential which enters our calculations is given by 

W(k)<pk=W'(k)<pk+V(t)<pk. (2.8) 

We have found a special form6 for the pseudopo­
tential, W(k). This has been achieved without approxi­
mation and should be distinguished from treatments in 
which W is assumed to have the form of a simple po­
tential.7*8 Such an assumption is frequently called a 

4 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 
6 W. A. Harrison, Phys. Rev. 126, 497 (1962). 
6 B. J. Austin, V. Heine, and L. J. Sham [Phys. Rev. 127, 276 

(1962) J, have discussed the relationship between various forms of 
the pseudopotential. 

7 J. M. Ziman, Phil Mag. 6, 1013 (1961). 
8 M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961). 
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pseudopotential approximation though it would more 
appropriately be called a wave-number-independent 
pseudopotential approximation. In our detailed treat­
ment of zinc, we find such an approximation totally 
inadequate. 

In our subsequent analysis, we will regard off-diagonal 
matrix elements of W, Wf, and V as small. We may 
readily see that this assertion requires also that we 
regard expressions of the form E«( W^aX^ajV**) (which 
we call OPW overlaps) as small and of the same order, 
This follows from Eq. (2.4), from which we see that 
different matrix elements will differ by terms of order 
(Ek'~-Ek)J2a(<Pk'jt'a)(4'a,<Pk)* In our detailed treatment 
of zinc we find, in fact, that £ a ( ^ , W ( ^ a , ^ ) is of the 
order of the matrix elements divided by the Fermi 
energy (near 10%) so this is consistent in practice. 

III. THE PERTURBATION EXPANSION 

A. The Energy Eigenstates 

We seek first the time-independent perturbation 
expansion. Writing the energy-eigenvalue fto)k = Ek, 
Eq. (2.5) becomes 

T(pk+V<pk+U<pk 

(<Pk,U<Pk)Y,a(4'*><Pk)4'a 
+ — -=Ek<pk. (3.1) 

(<Pk, <Pk) - E «( Vkjp*) tya, <Pk) 
The zero-order solutions are plane waves. <pk is expanded 
in the form, 

<pk = to-mti*-x £ q a(k)qe^-r, (3.2) 

where Q is the volume of the crystal. a(k)0 is of zero 
order; the remaining a(k)q are first or higher order. 
Equation (3.2) is substituted in (3.1) and the resulting 
equation solved in zero, first, and second order. Particu­
lar care must be taken in this analysis because of the 
nonlinearity of W. We obtain finally the first-order 
coefficients in the wave function, 

<k+q|W(*)|k> 
a(k)q= a(k)0, (3.3) 

Tk~Tk+q 

and the energy to second order, 

Ek=Tk+(k\W(k)\k) 

^<k|^(A)|k+q><k+q|JT(*)|k) 
+ E . (3.4) 

» Tk~Tk+q 

Here Tk is the kinetic energy, h2k2/2m. The matrix 
elements are all between plane waves and are given by 
(k'\W(K)\k)=(k'\V\k)+(kf\U\k) 

<K|t/|K)E«(k»(a|k) 
+ , (3.5) 

1-EJK«| /3>#|K> 

H A R R I S O N 

with 

{kf\U\k) = U~lt e^^Ue^dr, (3.6) 

and 

(a\k) = Qr^ Ua*eik-*dr. (3.7) 

For purposes of calculation, it is conveneint to rewrite 
the matrix element (k j W(k) | k + q) such that the state 
| k) lies to the right. This interchange is not immediate 
because of the non-Hermiticity of W(k) arising from 
the non-Hermiticity of U. Taking the form of U from 
Eq. (2.6) ,we see that 

<k/|U|k>*=(k|Fop
,|k'>-E«<k|^op ,l«><«|k ,>. (3.8) 

Furthermore, since Vop' is a good approximation to the 
ionic potential in the region of the core, we may write 

(k\Vop
f\a)=(k\Ea-T\a)=(Ea-Tk)(k\a). 

When this is substituted into Eq. (3.8), we obtain 

(k ' |^ |k)*- (k | f / |k / )=(n-r i f c OEa<k|a) (« |k / ) . 

Finally, we combine this result with Eq. (3.5) to obtain 
the non-Hermiticity of W(K) explicitly: 

< k + q | ^ W | k ) * - ( k | ^ ( K ) | k + q ) 

= (Tk-Tk+q)Za(k\a)(a\k+q). (3.9) 

The energy, (3.4) becomes 

Ek=Tk+(k\W(k)\k) 
-Eq<k+q|^(*)|k>E«<k|a><a|k+q> 
+i:,\(k+q\W(k)\k)\2/(Tk~Tk+q). (3.10) 

B. Scattering 

We also find the time-dependent perturbation result. 
We regard W as the perturbation giving rise to the 
scattering. It may be noted that in proceeding in this 
way we include in the scattering, terms which are 
customarily regarded as band structure; that is, W 
includes the periodic lattice potential as well as the 
potential arising from the defect of interest. It is readily 
seen, however, that the periodic potential does not 
contribute to the resistivity in that the set of electrons 
involved is of measure zero and our result will be propor­
tional to the number of defects as it should be. 

When scattering occurs in first order, the band struc­
ture (or periodic potential) does not enter at all. When 
it occurs in second order, we obtain cross terms so that 
the band structure does enter and again the resistivity 
is proportional to the number of defects. This is distinct 
from Umklapp, which is still only first order in the 
pseudopotential. 

This inclusion of the periodic potential to just the 
same order as the defect potential seems totally appro­
priate; the strength of the potential of an ion in the 
periodic array is ordinarily comparable to that of 
the defect. The analysis is immensely simpler than 
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analyzing the band structure to all orders before intro­
ducing the defect, and the formulation is much more 
straightforward. 

The formulation given here was developed in con­
junction with Smith Freeman, Jr. It is similar to, but 
more direct than, a formulation given by Austin, 
Heine, and Sham.9 We expand <pk in the form 

^ = 0 - 1 / 2 £ q a(0q^ (k+q)* r- i&,5f. 

This is substituted into the time-dependent Schrodinger 
equation, (3.5), and again solved by orders. The deriva­
tion proceeds as in the usual time-dependent case 
except that we must insert the explicit form for W from 
Eqs. (2.7) and (2.8) and keep track of the additional 
terms arising from the nonlinearity of W. At time zero 
we take only ao to be nonzero; we take 

^ g = < k + q | r + I F ( ^ ) | k + q ) - < k | r + ^ ( ^ ) | k ) . 

It is interesting to note that in the scattering problem 
we do not obtain any terms, such as the next to last 
term in Eq. (3.10) for the energy, which arise directly 
from the non-orthogonality of the OPW's. 

IV. THE SELF-CONSISTENT POTENTIAL 

We wish to write the potential operator as a sum of 
spherically symmetric operators centered on the indi­
vidual ion sites. The bare ion potentials can be written 
this way, and since only first-order screening enters, the 
screening field for each ion may be computed separately 
and will also be spherically symmetric. Thus each crystal 
field operator, 0, which enters our computation may be 
written as a sum of local operators, <?, entered on the 
ion sites, rj, 

0(r) = 5 X r - r , ) , (4.1) 

This allows us to separate the matrix elements into 
two factors, 

<k+q|0(r) |k)=5(q)(k+q|0 |k>, (4.2) 
with 

S(q) = Ey *-*•" /# , (4-3) 
and 

<k+qkik>=O0-x \e-i^^-xo{x)eik-xdT. (4.4) 

12o is the atomic volume, Q/N. S(q) is the structure 
factor which appears in diffraction theory; it depends 
only upon the positions of the ions and not on the ionic 
potentials. (k+ q | o | k) is analogous to the atomic form 
factor in diffraction theory; it depends upon the ionic 
potential, but not on the positions of the ions. We may 
note that, in contrast to diffraction theory, o{x) may 

9 See reference 6. 

We find finally that if there is a nonvanishing matrix 
element of W connecting the initial state k and the 
final state k' that 

iMk'-k—flo(k' | W(k) j k) exp(icojfc'_fc/), 

from which we may proceed to the transition rate as if 
we were treating free electrons: 

Pvk= (2T/*) I <y\W(k) | k)| 2S(/W_*). (3.11) 

WTe may note that this transition rate gives us the 
correct decay of the current since the wave function 
between cores is directly proportional to <p. Therefore, 
the current in these regions may be evaluated as if the 
wave function were for free electrons. 

If there is no matrix element connecting the states k 
and k', we must go to second order from which we obtain 

not commute with exp(tk-r) and therefore this form 
factor may depend upon k as well as q. 

The index a specifying the core states is replaced by 
a double index (j,t), with j specifying the position of 
the ion and t specifying the quantum numbers of the 
atomic state. Then matrix elements between core states 
and conduction-band states may also be written in 
convenient form, 

(a 101 k)= (eik-**/Nl**)(t | o | k), (4.5) 
with 

(/1o| k)=nQ~m Ut(*)o(r)eik'rdr. (4.6) 

The orthogonality coefficients are of this form with 0 
replaced by unity. This separation of matrix elements 
into structure-dependent and potential-dependent fac­
tors not only gives an immense computational simplifi­
cation, but also gives us hope of realistically computing 
the changes in energy when the ions are rearranged. 

Since 5(0) is equal to one and is thus independent of 
the arrangement of the ions, the diagonal matrix ele­
ments are independent of the arrangement of the ions. 
We are only interested in the changes in energy and in 
matrix elements as the ions are rearranged at constant 
volume; therefore, we may disregard diagonal elements 
throughout our analysis. We may now proceed to an 
explicit discussion of the potential. 

In our derivation of the effective Hamiltonian we 
divided the potential into a nonoverlapping part, vop' 
and an overlapping part, v. We require that vop' include 
the strong portion of the potential near the ion core. In 
our calculations we take z\,p' to be the Hartree-Fock 
field of the bare ion, cut off at a sphere with volume 

/V*=-
2TT L q (k+ql W(k) j k')*(k+q ] W(k) ] k) 

5(fkok'-k). (3.12) 
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equal to the cell volume. Then v includes the tails of the 
ion potential beyond the cutoff sphere and the potential 
due to the conduction electrons. The results appear to 
be quite insensitive to the details of the splitting of the 
potential. 

With this definition of vop\ and with the definition of 
localized operators given above, the form factors associ­
ated with U and W become, respectively, 

<k+q|w|k)=<k+q|i>op'|k> 
-£*<<IV|k><k+q|<>, (4.7) 

and 

(k+q\w(K)\k) 

= <k+q|*|k>+<k+q|*|k> 

+ — Zt(k+q\t)(t\k). (4.8) 
I-£I<*I<X' |K> 

The form factor associated with W is called the OPW 
form factor. It enters directly in the computation of 
energy states and in scattering. 

The potential vop' is obtained directly from a Hartree 
or Hartree-Fock analysis of the ion or atom in question 
by truncating at the equivalent sphere. The potential 
v contains the tail of the ion field beyond the equivalent 
sphere and the field due to the conduction electrons. 
This latter requires further calculation. 

We develop the field due to the conduction electrons 
by orders, noting again that terms of order £*(&' | t){t \ k), 
as well as terms of order w, are first order. The charge 
distribution due to individual OPW's contains a zero-
order uniform charge density, — Ze/Qo, and a first-order 
charge density which derives from the orthogonalization 
of the plane waves to the core states and their renormal-
ization. This first-order charge density contributes to 
off-diagonal matrix elements, (k+ q| W(k) | k) for q^O, 
while the zero-order charge density contributes only to 
diagonal elements. 

If <k+q|ze;(A)0|k) and <k-q|w(*)°|k>* were inde­
pendent of k they could be taken outside the summation 
to obtain the Cohen-Phillips result, 

V c=(k+q|^)° |k)( l-6 f l)A„ 

where ca is the Hartree dielectric function. This, how-
everts not the case and the rather laborious summations 
of Eq. (4.9) must be performed to obtain the self-
consistent potential. 

H A R R I S O N 

The replacement of individual OPW's by linear com­
binations of OPW's to first order in W gives an addi­
tional first-order charge distribution corresponding to a 
linear combination of plane waves and an additional 
second-order contribution due to the orthogonalization 
terms. Such a second-order contribution to the matrix 
elements does not enter our second-order energy calcula­
tion nor our scattering calculation. 

The off-diagonal matrix elements of v, then, derive 
from the tails of the ionic potential, from the charge 
distribution associated with orthogonalization of the 
plane waves to the core states, and finally from the 
self-consistent charge density, psc, which we may com­
pute from the first-order ^ ' s 1 0 ; 

Psc=— eJ^k<kF (fk*(Pk-

Cohen and Phillips7 have also made this replacement 
of the OPW's by plane waves in computing the screening 
without, however, indicating that this is consistent to 
the order to which the computation is made. Our treat­
ment of screening differs from theirs primarily in that 
they also replace W(k) by a simple potential. For our 
purposes this is quite inadequate. Where they find the 
matrix elements are simply divided by the Hartree 
dielectric function, we find a more complicated 
expression. 

The first-order screening charge density is readily 
obtained from the first-order <pkJs given by Eq. (3.2). 

Pac= -(e/Q)E« £*<*, [a(k)^ ' r +a(k) ,**-*• ' ] . 

Using Poisson's equation, we obtain the screening po­
tential, F8C, and obtain for the corresponding form 
factor, 

^8C=(k+q|z;8C|k) 
= {^eyq^)Y,k<kF [a(k),+a(k)_3*]. 

Finally we may substitute for the a(k)q from Eq. (3.3), 
write w(k) as a sum of the unscreened value, w(k)° and 
the screening potential, v60, snd solve for z/80. We obtain 

V. COMPUTATION OF THE MATRIX ELEMENTS 

We will follow and extend the method which we 
developed for the computation of matrix elements for 
zinc.5 In that treatment we took for the potential (called 
the unscreened potential in that treatment) simply the 
?>op' described above (with a slightly different cutoff 

10 Summation over k here, and throughout the analysis, should 
be regarded as sums over states; i.e., they include a sum over 
spin as well as a sum over wave number. 

4«2 j(k+q|w(A)°|k> <k-q|w(A)0|k)*l 

q2Q KkF\ Tk-Tk+q Tk-T^q J 
. (4.9) 

4rre2 f 1 1 1 
l Z + — 

<7212 k<kF[Tk— Tk+q Tk—Tl^q) 
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procedure). That appears to have been reasonably reli­
able for computation of the Fermi surface, but not for 
the more general problems we wish to consider. In the 
earlier treatment, we considered only matrix elements 
between states lying on the Fermi surface; we now need 
more general matrix elements. We proceed by com­
puting the form factors associated with the potential 
vop

f; we then include additional terms in the potential 
to obtain the unscreened form factors (k+q|w(£)°|k), 
and finally compute and add the screening terms to 
obtain the final OPW form factor from which matrix 
elements are to be determined. 

vop
f contains exchange between conduction and core 

electrons and is, therefore, an /-dependent potential. It is 
appropriate in computing these terms to expand the 
plane waves in spherical harmonics and spherical Bessel 
functions. We then follow the procedure described 
earlier,5 but generalized such that the magnitude of the 
final wavenumber, k ' = k + q, may differ from the magni­
tude of the initial wave number, k. We obtain for the 
form factor associated with uy 

<k+q|*|k> 

= (4TT/QO)LK2/+1)PZ(COS2@) 

r2ji(k'r)vop'ji(kr)dr 
: / 

— L« / rPni(r)vopji(kr)dr 

X xji(k'x)Pni(x)dx . (5.1) 

The P*(cos2©) are Legendre polynomials of 

cos2@ = k-k'/£&'; 

i.e., 20 is the angle between k and k' = k+q. The 
Pni(r) are the radial core functions, 

^ = r - ^ P n , ( r ) F r ( M . 

We may write the sum of overlap integrals which also 
appears in the expression for (k+q|w(fe)|k) in similar 
form, 

E,(k+q|/></|k>=(4ir/Oo)Ei(2/+l)/>i(cos2e) 

XZn IrjtiktyPnMdr xPm(x)ji(kx)dx. (5.2) 

In computing the form factors associated with the 
tails of the core potential, the potential due to replace­
ment of plane waves by OPW's, and actually some 
parts of i'op' which are not / dependent it is convenient 
to expand the product of the initial and final states 
rather than the two individually. Then since the po­
tentials are spherically symmetric, only the /=0 term 
contributes; this procedure was followed previously.6 

We have again achieved a sizable reduction in nu­
merical work in that only the small number of integrals 
appearing in (5.1) need be evaluated to obtain all of 
the matrix elements between any initial state with 
magnitude of wave number k and any final state with 
magnitude of wave number k'. In scattering calculations 
the right-hand state in any matrix element which enters 
has the Fermi wave number. In energy calculations, it 
has always a wave number equal to or less than the 
Fermi wavenumber. 

If we have the Hartree-Fock fields and wave functions 
for the ion in question, we evaluate the above integrals 
for a set of wave numbers of interest and can then 
write down the (k+q|« |k) . We then compute the 
additional potential v—vsc from the tail and orthogonal -
ization terms and find (k+q|w(£)°|k) for each q of 
interest and for various k<kF. These are then substi­
tuted into (4.9) to obtain the vq

BC for the q of interest. 
This is added on and we obtain the final OPW form 
factor which enters directly in the perturbation calcula­
tions of Sec. III. 

This completes the bulk of the computation required 
for a scattering calculation. For a particular type of 
defect we determine the geometrical structure factors 
5(q). These, in conjunction with the OPW form factors 
computed as above, give us the matrix elements entering 
(3.11) or (3.12) and we need simply sum over final 
states to obtain a scattering time. 

We are somewhat further from the end of the energy 
calculations. The form factors above enable us to obtain 
matrix elements and Hartree energies by Eq. (3.10), 
but we require the total energy of the system and we 
proceed to that calculation. 

VI. THE TOTAL ENERGY 

There are three contributions to this energy: First, 
the sum of the band energies of the occupied conduction-
band states. This is a sum of the Eu of Eq. (3.10) over 
all k<kF. Second, we must subtract an energy equal to 
the electron-electron Coulomb energy since this is 
counted twice in the Hartree approximation. Finally, 
we add the interaction between ions. This is simply the 
Coulomb interaction since we have taken the core states 
to be the atomic core states. The last two contributions 
are individually infinite, but their sum is not. 

It will be convenient to regroup these contributions 
into three terms which we call the "free-electron 
energy," the "electrostatic energy," and the "band-
structure energy." The division is somewhat arbitrary, 
but the one we select seems rather natural and is conven­
ient for the calculations. Only the last two depend upon 
the arrangement of the ions and need to be computed 
explicitly. 

Before defining our separation of terms, it is necessary 
to develop the various electrostatic contributions in 
detail. We define four charge densities: 
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po is the average charge density of the electrons (the 
charge density of all normalized plane waves with 
k<kF). 

popw is the change in conduction-electron charge 
density due to orthogonalization with the core states 
and the subsequent renormalization. 

p8C is the change in conduction-electron charge density 
arising from the use of multiple-OPW wave functions 
(as a result of the perturbation calculation) rather than 
single OPW's. 

Pion is the charge density of point ions with charge 
equal to the valence. 

We also define the four potentials, <3>°, #opw, <£sc, and 
<i>ion which may be derived from the corresponding 
charge densities with Poisson's equation. 

In terms of these quantities, the self-energy of the 
electrons which we wish to subtract is \f (po+poPw+p8c) 
X($°+<£opw+<£>sc)dT. The ion-ion self-energy which 
must be added is \f p\Qx&OXidT. (This integral should 
exclude the infinite self-energy of the individual ions.) 
I t is convenient also to extract one contribution from 
the sum over diagonal matrix elements from (3.10), the 
contribution from the potential of the point ions and 
the compensating uniform negative background, 
y ,p0(<i>0+i>ion)ir. These contributions may be collected, 
noting that in any term p and <3> may be interchanged. 
Further, we note that p0Pw and pse have vanishing aver­
age values, while po is constant. The resulting energy is 

1/ (po+Pion)($°+$ion)<2r / popw#opw^r 
; / ' 

• / Popw$8<Wr / p8c3>8<tfr. (6.1) 

The first integral is simply the electrostatic energy of 
positive point ions, with charge equal to the valence, 
and a compensating uniform negative background. The 
second integral is a similar self-energy of localized 
positive distributions arising from the orthogonalization 
and a compensating uniform negative distribution due 
to renormalization. If we define ebZ to be the total 
charge localized at each ion by the orthogonalization 
(about 0.28e in zinc) then the sum of the two first terms 
is simply the electrostatic energy (within a constant 
term independent of arrangement) of point ions with 
effective valence Z*, given by 

Z*2=Z2-(<5Z)2 , (6.2) 

imbedded in a compensating uniform background. We 
define this to be the "electrostatic energy." I t is cus­
tomarily computed by methods due to Ewald. 

The last two terms in (6.1) and the sum over off-
diagonal (q?^0) terms in Eq. (3.10) are to be included 
in the "band-structure energy." The remaining diagonal 
terms in (3.10) and the kinetic energy are included in 

the "free-electron energy," which is independent of the 
positions of the ions and not considered further. 

The third term in (6.1) may be written in more con­
venient form by noting that $sc=J^q(l/e)Vq

8Cei(l'r. 
[See Eq. (4.9) for the corresponding form factor.] We 
obtain popw explicitly and obtain finally 

- PoP*$scdT = j:qVq
scj:a,k <k-q|a><a|k> 

+ < k l a ) ( a | k + q ) - < k | a ) ( a l k ) / 0 aV««'q"r<*T 

The integral on the right has not appeared before; it 
may be evaluated explicitly or might be estimated as 
eiq'Ti. I t can then be seen that the first and last terms 
in the curly brackets very nearly cancel. The final term 
in Eq. (6.1) may also be written more conveniently as 

- ( 1 / 2 ) Psc^dr= - § Z«W/^e*) | Vq»\*. 

The total band-structure energy per electron is, then 

Eha= (1/;VZ)LQ, J - [ ( k + q | W(k) | k > - IV*] 

XE«<k|a)<cx|k+q> 

+ \(k+q\W(k)\k)\*/(Tk-Th+q) 

+ P . i 0 E . ( < k - q | a > < a | k > 

-<k|a)<a|k)A/V \pae^'TdT) 

- ( l / 2 Z ) E , ( ^ 2 / 4 7 r e 2 ) | F / c | 2 . 

The matrix elements and orthogonality coefficients may 
be separated into structure factors and form factors and 
the energy per electron written in the final convenient 
form, 

Ebi=ZnS*(q)S(q)E(q), (6.3) 

where E(q) is defined as the energy wave number charac­
teristic and is given by 

£(?)=(l/ iVZ)Z:*|-<k+q|ie.(*)»|k>Z;4<k|/></|k+q> 

+ | < k + q | w ( * ) | k > | V ( r 4 - r * t , ) 

+ V ° Z . « k + q | / X < | k > 

-<k|/></|k>y^V^'-rrfr)[ 

-(fio?V&r^e2)!V c l2- (6.4) 
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Here again w(k)° is the unscreened pseudopotential and 
the summation over k implies a sum over wave number 
and spin of the occupied states. 

We may compute this E(q) by the methods described 
above for a given ion type and given ion density. The 
computation of the energy for a given arrangement of 
ions then involves first the computation of the structure 
factors 5(q); for a perfect crystal these will be delta 
functions at the reciprocal lattice points. We then 
multiply the square of each by the E(q) value calculated 
and sum over wave number space to obtain the band 
structure energy. To this we add the electrostatic energy 
computed with the effective charge given by Eq. (6.2) 
and obtain all of the energy which depends upon the 
ion arrangement. The convergence of the computation 
of band-structure energy at large q seems to be quite 
rapid. 

VII. THE EFFECTIVE ION-ION INTERACTION 

For many problems, the above formulation is very 
convenient. Furthermore, it is of some interest physi­
cally to separate the band-structure and electrostatic 
contributions. For some purposes it may be preferable 
to transform the formulation into an ion-ion interaction 
which includes both the electrostatic and band-structure 
terms. This approach has been suggested by Cohen.11 

Such a formulation converges badly at large distances 
for either contribution by itself, but appears to converge 
quite well for the sum; this is because of the screening 
of the long range Coulomb interaction by the self-
consistent field. 

This form may be derived directly by adding the 
band-structure and electrostatic energy, writing the 
structure factors out explicitly in Eq. (6.3), and inter-

11 M. H. Cohen, paper contributed to Colloquim on The Struc­
ture of Metallic Solid Solutions, Orsay, France, July 9-11, 1962 
in the Proceedings of the Colloquim (to be published). 

changing the summations to obtain the energy per ion 

£= (Z/N*)Zv L* E(q)e^^~^+ 
+ ( l /2 iV)Li ;Z*V/ | r i - r J | . 

This is to be equated to the energy per ion written in 
terms of the effective ion-ion interaction V(r)9 

£=( l /2 iV)E«V(r 1 - r i ) . 

From these two expressions for the energy, it follows 
that 

V(r) = (2Z/NyE* E(q)e*-*+Z**e*/r 

SZ2 f # (7.1) 
= / x sin(& Frx)E(k Fx)dx+Z* V/r , 

k?r J 

with x=q/kF-
This transformation may be made explicitly once 

E(q) has been computed. We may note the limiting 
behavior at large and small distance. The short-range 
limit has little meaning in that we have assumed that 
the cores do not overlap and we cannot bring ions very 
close without violating this condition. Under the ap­
proximations we have made, the first term in (7.1) goes 
to a constant as r goes to zero and the second term domi­
nates. The appearance of an effective charge of Z* 
rather than Z or than the total atomic number is of no 
great significance. At large distance the Coulomb field 
is screened in any case. At small distances the appropri­
ate effective charge depends upon the conditions and 
assumptions with respect to overlap. 

At large distance we can show that the first term 
approaches —Z*2e2/r, just cancelling the second. We 
may expect oscillating terms falling off as 1/r3 to arise 
from irrgularities in E(q) at q=2kF. However, these 
are not important in the total energy unless there is an 
accidental matching of a lattice distance and the Fermi 
wavelength. The remaining terms are expected to drop 
exponentially because of the screening. 


